Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.7 Exercises - Page 566: 88

Answer

$$A = P{e^{rt}}$$

Work Step by Step

$$\eqalign{ & A = P{\left( {1 + \frac{r}{n}} \right)^{nt}} \cr & \mathop {\lim }\limits_{n \to \infty } A = \mathop {\lim }\limits_{n \to \infty } P{\left( {1 + \frac{r}{n}} \right)^{nt}}{\text{ }} \cr & = P\mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{r}{n}} \right)^{nt}} \cr & {\text{Evaluating the limit}} \cr & \mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{r}{n}} \right)^{nt}} = {\left( {1 + \frac{r}{\infty }} \right)^\infty } = {1^\infty } \cr & {\text{This limit has the form }}{1^\infty }{\text{ }} \cr & {\left( {1 + \frac{r}{n}} \right)^{nt}} = {e^{nt\ln \left( {1 + \frac{r}{n}} \right)}},{\text{ then}} \cr & \mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{r}{n}} \right)^{nt}} = \mathop {\lim }\limits_{n \to \infty } {e^{nt\ln \left( {1 + \frac{r}{n}} \right)}} = {e^{\mathop {\lim }\limits_{n \to \infty } nt\ln \left( {1 + \frac{r}{n}} \right)}} \cr & {\text{The first step is to evaluate }} \cr & L = \mathop {\lim }\limits_{n \to \infty } nt\ln \left( {1 + \frac{r}{n}} \right) = t\mathop {\lim }\limits_{n \to \infty } \frac{{\ln \left( {1 + \frac{r}{n}} \right)}}{{1/n}} = t\left( {\frac{{\ln \left( {1 + \frac{r}{\infty }} \right)}}{{1/\infty }}} \right) = \frac{0}{0} \cr & {\text{Using L'Hopital's rule}} \cr & L = t\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{d}{{dn}}\left[ {\ln \left( {1 + \frac{r}{n}} \right)} \right]}}{{\frac{d}{{dn}}\left[ {1/n} \right]}} = t\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{{ - r/{n^2}}}{{1 + 1/n}}}}{{\left( { - 1/{n^2}} \right)}} \cr & = t\mathop {\lim }\limits_{n \to \infty } \frac{r}{{1 + 1/n}} \cr & = t\left( {\frac{1}{{1 + 1/\infty }}} \right) = rt \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{n \to \infty } {e^{nt\ln \left( {1 + \frac{r}{n}} \right)}} = {e^{\mathop {\lim }\limits_{n \to \infty } nt\ln \left( {1 + \frac{r}{n}} \right)}} = {e^{rt}} \cr & \mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{r}{n}} \right)^{nt}} = {e^{rt}} \cr & and \cr & A = P\mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{r}{n}} \right)^{nt}}{\text{ }} = P{e^{rt}} \cr & A = P{e^{rt}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.