Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.7 Exercises - Page 566: 92

Answer

$$c = \root 3 \of 3 $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{1}{x},{\text{ }}g\left( x \right) = {x^2} - 4{\text{ }}\underbrace {\left[ {1,2} \right]}_{\left[ {a,b} \right]} \cr & {\text{Differentiate both functions}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{x}} \right] = - \frac{1}{{{x^2}}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {{x^2} - 4} \right] = 2x \cr & {\text{Apply the Extended Mean Value Theorem}} \cr & \frac{{f'\left( c \right)}}{{g'\left( c \right)}} = \frac{{f\left( b \right) - f\left( a \right)}}{{g\left( b \right) - g\left( a \right)}} \cr & {\text{,then}} \cr & \frac{{ - \frac{1}{{{{\left( c \right)}^2}}}}}{{2\left( c \right)}} = \frac{{\frac{1}{2} - \frac{1}{1}}}{{\left[ {{{\left( 2 \right)}^2} - 4} \right] - \left[ {{{\left( 1 \right)}^2} - 4} \right]}} \cr & {\text{Simplifying}} \cr & - \frac{1}{{2{c^3}}} = \frac{{ - 1/2}}{3} \cr & \frac{1}{{2{c^3}}} = \frac{1}{6} \cr & {c^3} = 3 \cr & c = \root 3 \of 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.