Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.6 Exercises - Page 556: 56

Answer

The solution is $$\frac{2}{\sqrt5}\arctan\sqrt5.$$

Work Step by Step

To solve the integral $$\int_{0}^{\pi/2}\frac{1}{3-2\cos\theta}d\theta$$ we will use substitution $\tan\frac{\theta}{2}=t\Rightarrow d\theta=\frac{2}{1+t^2}dt,\cos\theta=\frac{1-t^2}{1+t^2}$ and for the integration bounds we will have $t=0$ and $t=1$. Putting all of this into the integral we will have: $$\int_{0}^{\pi/2}\frac{1}{3-2\cos\theta}d\theta=\int_{0}^{1}\frac{1}{3-2\frac{1-t^2}{1+t^2}}\frac{2}{1+t^2}dt=\int_{0}^{1}\frac{1}{\frac{3(1+t^2)-2(1-t^2)}{1+t^2}}\frac{2}{1+t^2}dt=\int_{0}^{1}\frac{1+t^2}{3+3t^2-2+2t^2}\frac{2}{1+t^2}dt=2\int_{0}^{1}\frac{dt}{1+5t^2}.$$ Now we will use new substitution $z=\sqrt5 t$ which gives us $\sqrt5 dt=dz$ and the integration bounds are $z=0$ and $z=\sqrt5$. Putting this into our integral we have: $$2\int_{0}^{1}\frac{dt}{1+5t^2}=2\int_{0}^{\sqrt5}\frac{1}{1+z^2}\frac{dz}{\sqrt5}=\frac{2}{\sqrt5}\left.\arctan z\right|_{0}^{\sqrt5}=\frac{2}{\sqrt5}(\arctan\sqrt5-\arctan0)=\frac{2}{\sqrt5}\arctan\sqrt5-\frac{2}{\sqrt5}0=\frac{2}{\sqrt5}\arctan\sqrt5.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.