Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.6 Exercises - Page 556: 55

Answer

The solution is $$\int_{0}^{\pi/2}\frac{1}{1+\sin\theta+\cos\theta}d\theta=\ln2.$$

Work Step by Step

To solve the integral: $$\int_{0}^{\pi/2}\frac{1}{1+\sin\theta+\cos\theta}d\theta$$ we will use substitution $\tan\frac{\theta}{2}=t\Rightarrow d\theta=\frac{2}{1+t^2}dt,\cos\theta=\frac{1-t^2}{1+t^2}, \sin\theta=\frac{2t}{1+t^2}$ and the integration bounds become $t=0$ and $t=1$. Now putting all this into the integral we have: $$\int_{0}^{\pi/2}\frac{1}{1+\sin\theta+\cos\theta}d\theta= \int_{0}^{1}\frac{1}{1+\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2}}\frac{2}{1+t^2}dt= \int_{0}^{1}\frac{1}{\frac{1+t^2+2t+1-t^2}{1+t^2}}\frac{2}{1+t^2}dt= \int_{0}^{1}\frac{1+t^2}{2+2t}\frac{2}{1+t^2}dt= \int_{0}^{1}\frac{1}{1+t^2}dt=\left.\ln|1+t|\right|_{0}^{1}=\ln2-\ln1=\ln2-0=\ln2.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.