Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 540: 54

Answer

$${\text{True}}$$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^1 {{x^2}\sqrt {1 - {x^2}} dx} \cr & {\text{Let }}x = \sin \theta ,{\text{ }}dx = \cos \theta d\theta \cr & {\text{The new limits of integration are}} \cr & x = - 1,{\text{ }}\theta = {\sin ^{ - 1}}\left( { - 1} \right) = - \frac{1}{2}\pi \cr & x = 1,{\text{ }}\theta = {\sin ^{ - 1}}\left( 1 \right) = \frac{1}{2}\pi \cr & {\text{Substituting}} \cr & \int_{ - 1}^1 {{x^2}\sqrt {1 - {x^2}} dx} = \int_{ - \pi /2}^{\pi /2} {{{\sin }^2}\theta \sqrt {1 - {{\sin }^2}\theta } \cos \theta d\theta } \cr & = \int_{ - \pi /2}^{\pi /2} {{{\sin }^2}\theta {{\cos }^2}\theta d\theta } \cr & {\text{By using properties of integrals}} \cr & = 2\int_0^{\pi /2} {{{\sin }^2}\theta {{\cos }^2}\theta d\theta } \cr & {\text{The statement is True}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.