Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 540: 51

Answer

$${\text{True}}$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {1 - {x^2}} }}} \cr & {\text{Let }}x = \sin \theta ,{\text{ }}dx = \cos \theta d\theta \cr & {\text{Substituting}} \cr & \int {\frac{{dx}}{{\sqrt {1 - {x^2}} }}} = \int {\frac{{\cos \theta d\theta }}{{\sqrt {1 - {{\left( {\sin \theta } \right)}^2}} }}} \cr & = \int {\frac{{\cos \theta d\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \cr & {\text{Simplifying}} \cr & = \int {\frac{{\cos \theta d\theta }}{{\cos \theta }}} \cr & = \int {d\theta } \cr & {\text{The statement is True}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.