Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 540: 53

Answer

$${\text{False}}$$

Work Step by Step

$$\eqalign{ & \int_0^{\sqrt 3 } {\frac{{dx}}{{{{\left( {1 + {x^2}} \right)}^{3/2}}}}} \cr & {\text{Let }}x = \tan \theta ,{\text{ }}dx = {\sec ^2}\theta d\theta \cr & {\text{The new limits of integration are}} \cr & x = 0,{\text{ }}\theta = {\tan ^{ - 1}}0 = 0 \cr & x = \sqrt 3 ,{\text{ }}\theta = {\tan ^{ - 1}}\sqrt 3 = \frac{1}{3}\pi \cr & {\text{Substituting}} \cr & \int_0^{\sqrt 3 } {\frac{{dx}}{{{{\left( {1 + {x^2}} \right)}^{3/2}}}}} = \int_0^{\frac{1}{3}\pi } {\frac{{{{\sec }^2}\theta d\theta }}{{{{\left( {1 + {{\tan }^2}\theta } \right)}^{3/2}}}}} \cr & = \int_0^{\frac{1}{3}\pi } {\frac{{{{\sec }^2}\theta d\theta }}{{{{\left( {{{\sec }^2}\theta } \right)}^{3/2}}}}} \cr & = \int_0^{\frac{1}{3}\pi } {\frac{1}{{{{\left( {\sec \theta } \right)}^{1/2}}}}} d\theta \cr & = \int_0^{\frac{1}{3}\pi } {\sqrt {\cos \theta } } d\theta \cr & {\text{The statement is False}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.