Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 540: 52

Answer

$${\text{False}}$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt {{x^2} - 1} }}{x}} dx \cr & {\text{Let }}x = \sec \theta ,{\text{ }}dx = \sec \theta \tan \theta d\theta \cr & {\text{Substituting}} \cr & \int {\frac{{\sqrt {{x^2} - 1} }}{x}} dx = \int {\frac{{\sqrt {{{\left( {\sec \theta } \right)}^2} - 1} }}{{\sec \theta }}} \left( {\sec \theta \tan \theta } \right)d\theta \cr & {\text{Simplifying}} \cr & = \int {\sqrt {{{\sec }^2}\theta - 1} } \left( {\tan \theta } \right)d\theta \cr & = \int {\sqrt {{{\tan }^2}\theta } } \left( {\tan \theta } \right)d\theta \cr & = \int {{{\tan }^2}\theta } d\theta \cr & {\text{The statement is False}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.