Answer
$$P=P_0e^{kt}$$
Work Step by Step
$dP-kPdt=0$
$dP=kPdt$
$\frac{1}{P}dP=kdt$
$\int\frac{1}{P}dP=\int kdt$
$\ln{P}=kt+C$
$e^{\ln{P}}=P=e^{kt+C}=e^Ce^{kt}$
Let $A=e^C$
Then
$P=Ae^{kt}$
Applying our initial condition we get
$P_0=Ae^0=A$
and so our particular solution becomes
$$P=P_0e^{kt}$$