Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.3 Exercises - Page 421: 12

Answer

$$y = 11\sqrt {{x^2} - 16} + C$$

Work Step by Step

$$\eqalign{ & \sqrt {{x^2} - 16} y' = 11x \cr & {\text{Write }}y'{\text{ as }}\frac{{dy}}{{dx}} \cr & \sqrt {{x^2} - 16} \frac{{dy}}{{dx}} = 11x \cr & {\text{Separate the variables}} \cr & dy = \frac{{11x}}{{\sqrt {{x^2} - 16} }}dx \cr & {\text{Integrate both sides}} \cr & \int {dy} = \int {\frac{{11x}}{{\sqrt {{x^2} - 16} }}} dx \cr & y = \int {\frac{{11x}}{{\sqrt {{x^2} - 16} }}} dx \cr & {\text{Let }}u = {x^2} - 16,{\text{ }}du = 2xdx,{\text{ }}dx = \frac{1}{{2x}}du \cr & {\text{Substituting}} \cr & y = 11\int {\frac{x}{{\sqrt u }}\left( {\frac{1}{{2x}}} \right)} du \cr & y = \frac{{11}}{2}\int {\frac{1}{{\sqrt u }}} du \cr & y = \frac{{11}}{2}\int {{u^{ - 1/2}}} du \cr & y = \frac{{11}}{2}\left( {\frac{{{u^{1/2}}}}{{1/2}}} \right) + C \cr & y = 11\sqrt u + C \cr & y = 11\sqrt {{x^2} - 16} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.