Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.8 Exercises - Page 1034: 6

Answer

$\frac{{25}}{2}$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^{2y} {\left( {9 + 3{x^2} + 3{y^2}} \right)} } dxdy \cr & = \int_0^1 {\left[ {\int_0^{2y} {\left( {9 + 3{x^2} + 3{y^2}} \right)} dx} \right]} dy \cr & {\text{Integrate with respect to }}x \cr & \int_0^{2y} {\left( {9 + 3{x^2} + 3{y^2}} \right)} dx = \left[ {9x + {x^3} + 3x{y^2}} \right]_0^{2y} \cr & = 9\left( {2y} \right) + {\left( {2y} \right)^3} + 3\left( {2y} \right){y^2} \cr & = 18y + 8{y^3} + 6{y^3} \cr & = 18y + 14{y^3} \cr & \int_0^1 {\left[ {\int_0^{2y} {\left( {9 + 3{x^2} + 3{y^2}} \right)} dx} \right]} dy = \int_0^1 {\left( {18y + 14{y^3}} \right)} dy \cr & {\text{Integrating}} \cr & = \left[ {9{y^2} + \frac{7}{2}{y^4}} \right]_0^1 \cr & = 9{\left( 1 \right)^2} + \frac{7}{2}{\left( 1 \right)^4} \cr & = \frac{{25}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.