Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.8 Exercises - Page 1034: 4

Answer

$$\frac{{88}}{{15}}$$

Work Step by Step

$$\eqalign{ & \int_0^2 {\int_{{x^2}}^{2x} {\left( {{x^2} + 2y} \right)} } dydx \cr & = \int_0^2 {\left[ {\int_{{x^2}}^{2x} {\left( {{x^2} + 2y} \right)} dy} \right]} dx \cr & {\text{Integrate with respect to }}y \cr & \int_{{x^2}}^{2x} {\left( {{x^2} + 2y} \right)} dy = \left[ {{x^2}y + {y^2}} \right]_{{x^2}}^{2x} \cr & = \left[ {{x^2}\left( {2x} \right) + {{\left( {2x} \right)}^2}} \right] - \left[ {{x^2}\left( {{x^2}} \right) + {{\left( {{x^2}} \right)}^2}} \right] \cr & = 2{x^3} + 4{x^2} - {x^4} - {x^4} \cr & = 2{x^3} + 4{x^2} - 2{x^4} \cr & \int_0^2 {\left[ {\int_{{x^2}}^{2x} {\left( {{x^2} + 2y} \right)} dy} \right]} dx = \int_0^2 {\left( {2{x^3} + 4{x^2} - 2{x^4}} \right)} dx \cr & {\text{Integrating}} \cr & = \left[ {\frac{1}{2}{x^4} + \frac{4}{3}{x^3} - \frac{2}{5}{x^5}} \right]_0^2 \cr & {\text{Simplifying}} \cr & = \frac{1}{2}{\left( 2 \right)^4} + \frac{4}{3}{\left( 2 \right)^3} - \frac{2}{5}{\left( 2 \right)^5} - 0 \cr & = \frac{{88}}{{15}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.