Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.8 Exercises - Page 1034: 5

Answer

$$36$$

Work Step by Step

$$\eqalign{ & \int_0^3 {\int_0^{\sqrt {9 - {x^2}} } {4x} } dydx \cr & = \int_0^3 {\left[ {\int_x^{\sqrt {9 - {x^2}} } {4x} dy} \right]} dx \cr & {\text{Integrate with respect to }}y \cr & \int_x^{\sqrt {9 - {x^2}} } {4x} dy = \left[ {4xy} \right]_0^{\sqrt {9 - {x^2}} } \cr & = 4x\left( {\sqrt {9 - {x^2}} } \right) - 4x\left( 0 \right) \cr & = 4x\sqrt {9 - {x^2}} \cr & \int_0^3 {\left[ {\int_x^{\sqrt {9 - {x^2}} } {4x} dy} \right]} dx = \int_0^3 {4x\sqrt {9 - {x^2}} } dx \cr & = \int_0^3 {4x\sqrt {9 - {x^2}} } dx \cr & = - 2\int_0^3 {\left( { - 2x} \right)\sqrt {9 - {x^2}} } dx \cr & {\text{Integrating}} \cr & = - 2\left[ {\frac{{{{\left( {9 - {x^2}} \right)}^{3/2}}}}{{3/2}}} \right]_0^3 \cr & {\text{Simplifying}} \cr & = - \frac{4}{3}\left[ {{{\left( {9 - {x^2}} \right)}^{3/2}}} \right]_0^3 \cr & = - \frac{4}{3}\left[ {{{\left( {9 - {3^2}} \right)}^{3/2}} - {{\left( {9 - 0} \right)}^{3/2}}} \right] \cr & = - \frac{4}{3}\left( { - 27} \right) \cr & = 36 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.