Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.8 Exercises - Page 1034: 3

Answer

$$\frac{{29}}{6}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^{1 + x} {\left( {3x + 2y} \right)} } dydx \cr & = \int_0^1 {\left[ {\int_0^{1 + x} {\left( {3x + 2y} \right)} } \right]dy} dx \cr & {\text{Integrate with respect to }}y \cr & \int_0^{1 + x} {\left( {3x + 2y} \right)} = \left[ {3xy + {y^2}} \right]_0^{1 + x} \cr & = \left[ {3x\left( {1 + x} \right) + {{\left( {1 + x} \right)}^2}} \right] - \left[ {3x\left( 0 \right) + {{\left( 0 \right)}^2}} \right] \cr & = 3x + 3{x^2} + 1 + 2x + {x^2} \cr & = 4{x^2} + 5x + 1 \cr & = \int_0^1 {\left[ {\int_0^{1 + x} {\left( {3x + 2y} \right)} } \right]dy} dx = \int_0^1 {\left( {4{x^2} + 5x + 1} \right)} dx \cr & {\text{Integrating}} \cr & = \left[ {\frac{4}{3}{x^3} + \frac{5}{2}{x^2} + x} \right]_0^1 \cr & {\text{Simplifying}} \cr & = \left[ {\frac{4}{3}{{\left( 1 \right)}^3} + \frac{5}{2}{{\left( 1 \right)}^2} + \left( 1 \right)} \right] - \left[ {\frac{4}{3}{{\left( 0 \right)}^3} + \frac{5}{2}{{\left( 0 \right)}^2} + \left( 0 \right)} \right] \cr & = \frac{4}{3} + \frac{5}{2} + 1 \cr & = \frac{{29}}{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.