Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.6 Exercises - Page 924: 40

Answer

$$\nabla f\left( {x,y} \right) = - \frac{1}{3}{\bf{i}} - \frac{1}{2}{\bf{j}}$$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = 3 - \frac{x}{3} - \frac{y}{2} \cr & {\text{Find the partial derivatives }}{f_x}\left( {x,y} \right){\text{ and }}{f_y}\left( {x,y} \right) \cr & {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {3 - \frac{x}{3} - \frac{y}{2}} \right] = - \frac{1}{3} \cr & and \cr & {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {3 - \frac{x}{3} - \frac{y}{2}} \right] = - \frac{1}{2} \cr & {\text{Calculate }}\nabla f\left( {x,y} \right) \cr & \nabla f\left( {x,y} \right) = {f_x}\left( {x,y} \right){\bf{i}} + {f_y}\left( {x,y} \right){\bf{j}} \cr & \nabla f\left( {x,y} \right) = - \frac{1}{3}{\bf{i}} - \frac{1}{2}{\bf{j}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.