Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.6 Exercises - Page 924: 32

Answer

$$\nabla g\left( {x,y} \right) = \frac{2}{{3\left( {{x^2} + {y^2}} \right)}}\left( {x{\bf{i}} + y{\bf{j}}} \right),{\text{ }}\frac{1}{{15}}\sqrt {20} $$

Work Step by Step

$$\eqalign{ & g\left( {x,y} \right) = \ln \root 3 \of {{x^2} + {y^2}} ,{\text{ point }}\left( {1,2} \right) \cr & g\left( {x,y} \right) = \ln {\left( {{x^2} + {y^2}} \right)^{1/3}} \cr & g\left( {x,y} \right) = \frac{1}{3}\ln \left( {{x^2} + {y^2}} \right) \cr & {\text{Find the partial derivatives }}{g_x}\left( {x,y} \right){\text{ and }}{g_y}\left( {x,y} \right) \cr & {g_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {\frac{1}{3}\ln \left( {{x^2} + {y^2}} \right)} \right] \cr & {g_x}\left( {x,y} \right) = \frac{1}{3}\left( {\frac{{2x}}{{{x^2} + {y^2}}}} \right) \cr & {g_x}\left( {x,y} \right) = \frac{2}{3}\left( {\frac{x}{{{x^2} + {y^2}}}} \right) \cr & and \cr & {g_y}\left( {x,y} \right) = \frac{2}{3}\left( {\frac{y}{{{x^2} + {y^2}}}} \right) \cr & {\text{Calculate }}\nabla g\left( {x,y} \right) \cr & \nabla g\left( {x,y} \right) = {g_x}\left( {x,y} \right){\bf{i}} + {g_y}\left( {x,y} \right){\bf{j}} \cr & \nabla g\left( {x,y} \right) = \frac{2}{3}\left( {\frac{x}{{{x^2} + {y^2}}}} \right){\bf{i}} + \frac{2}{3}\left( {\frac{y}{{{x^2} + {y^2}}}} \right){\bf{j}} \cr & \nabla g\left( {x,y} \right) = \frac{2}{{3\left( {{x^2} + {y^2}} \right)}}\left( {x{\bf{i}} + y{\bf{j}}} \right) \cr & \cr & {\text{Evaluate }}\nabla g\left( {1,2} \right) \cr & \nabla g\left( {1,2} \right) = \frac{2}{{3\left( {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2}} \right)}}\left( {{\bf{i}} + 2{\bf{j}}} \right) \cr & \nabla g\left( {1,2} \right) = \frac{2}{{15}}\left( {{\bf{i}} + 2{\bf{j}}} \right) \cr & \cr & {\text{The maximum value of }}{D_{\bf{u}}}g\left( {x,y} \right){\text{ is }}\left\| {\nabla g\left( {x,y} \right)} \right\| \cr & \left\| {\nabla g\left( {0,5} \right)} \right\| = \left\| {\frac{2}{{15}}\left( {{\bf{i}} + 2{\bf{j}}} \right)} \right\| \cr & \left\| {\nabla g\left( {0,5} \right)} \right\| = \sqrt {\frac{4}{{{{15}^2}}} + \frac{{16}}{{{{15}^2}}}} \cr & \left\| {\nabla g\left( {0,5} \right)} \right\| = \frac{1}{{15}}\sqrt {20} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.