Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.2 Exercises - Page 888: 66

Answer

(a) $$\lim_{\Delta x\to 0}\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}=-\frac{1}{(x+y)^2}.$$ (b) $$\lim_{\Delta y\to 0}\frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}=-\frac{1}{(x+y)^2}.$$

Work Step by Step

We have that $$f(x+\Delta x,y)=\frac{1}{x+\Delta x+y}.$$ and $$f(x,y+\Delta y)=\frac{1}{x+y+\Delta y}.$$ (a) $$\lim_{\Delta x\to 0}\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x} =\lim_{\Delta x\to 0}\frac{\frac{1}{x+\Delta x+y}-\frac{1}{x+y}}{\Delta x}= \lim_{\Delta x\to 0}\frac{\frac{x+y-x-\Delta x-y}{(x+y)(x+\Delta x +y)}}{\Delta x}=\\\lim_{\Delta x\to 0}\frac{-\Delta x}{\Delta x(x+y)(x+\Delta x+y)} = \lim_{\Delta x\to 0}\frac{-1}{(x+y)(x+\Delta x +y)} = -\frac{1}{(x+y)(x+0+y)} = -\frac{1}{(x+y)^2}.$$ where in the last two steps we used the method of substitution and then calculated the limit. (b) $$\lim_{\Delta y\to 0}\frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}= \lim_{\Delta y\to 0}\frac{\frac{1}{x+y+\Delta y}-\frac{1}{x+y}}{\Delta y}= \lim_{\Delta y\to 0}\frac{\frac{x+y-x-y-\Delta y}{(x+y)(x+y+\Delta y)}}{\Delta y}=\\\lim_{\Delta y\to 0}\frac{-\Delta y}{\Delta y(x+y)(x+y+\Delta y)} = \lim_{\Delta y\to 0}\frac{-1}{(x+y)(x+y+\Delta y)} = -\frac{1}{(x+y)(x+y+0)} = -\frac{1}{(x+y)^2}.$$ where in the last two steps we used the method of substitution and then calculated the limit.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.