Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.2 Exercises - Page 888: 51

Answer

The limit is $$\lim_{(x,y)\to(0,0)}\frac{1-\cos(x^2+y^2)}{x^2+y^2}=0.$$

Work Step by Step

We have $$\lim_{(x,y)\to(0,0)}\frac{1-\cos(x^2+y^2)}{x^2+y^2}.$$ Introduce the polar coordinates: $$\rho^2=x^2+y^2,\quad \tan\frac{y}{x}, \quad (x,y)\to0 \Rightarrow \rho\to0.$$ The limit becomes $$\lim_{(x,y)\to(0,0)}\frac{1-\cos(x^2+y^2)}{x^2+y^2}=\lim_{\rho\to0}\frac{1-\cos\rho^2}{\rho^2}.$$ When $\rho\to0$ then $1-\cos\rho^2 \to 0$ because $\cos\rho^2\to 1$. Also in the denominator $\rho^2\to0$. Since both the numerator and the denominator tend to zero we can use L'Hopital's rule: $$\lim_{\rho\to0}\frac{1-\cos\rho^2}{\rho^2}=\lim_{\rho\to0}\frac{(1-\cos\rho^2)'}{(\rho^2)'}=\\ \lim_{\rho\to0}\frac{2\rho\sin\rho}{2\rho}=\lim_{\rho\to0}\sin\rho=0$$ where in the last step we used the metod of substitution to evaluate the limit.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.