Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.2 Exercises - Page 888: 50

Answer

The limit is $$\lim_{(x,y)\to(0,0)}\frac{\sin(x^2+y^2)}{x^2+y^2}=1.$$

Work Step by Step

We have a given limit $$\lim_{(x,y)\to(0,0)}\frac{\sin(x^2+y^2)}{x^2+y^2}.$$ We well use the polar coordinates: $$\rho^2 = x^2+y^2,\quad \tan\phi=\frac{y}{x}.$$ This yields $$\lim_{(x,y)\to(0,0)}\frac{\sin(x^2+y^2)}{x^2+y^2}=\lim_{\rho\to0}\frac{\sin \rho^2}{\rho^2},$$ where we used that when $(x,y)\to0$ then $\rho\to0$. When $\rho\to0$ both the numerator and the denominator tend to zero ($\rho\to0$ then $\sin\rho^2\to0$ and $\rho^2\to0$), so we can use L'Hopital rule: $$\lim_{\rho\to0}\frac{\sin\rho^2}{\rho^2}=\lim_{\rho\to0}\frac{(\sin\rho^2)'}{(\rho^2)'} = \lim_{\rho\to0}\frac{2\rho\cos \rho}{2\rho}=\lim_{\rho\to0}\cos\rho= 1,$$ so the original limit is $$\lim_{(x,y)\to(0,0)}\frac{\sin(x^2+y^2)}{x^2+y^2}=1.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.