Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.2 Exercises - Page 888: 47

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \cos \left( {{x^2} + {y^2}} \right) \cr & {\text{Rewrite the limit using polar coordinates}} \cr & x = r\cos \theta ,{\text{ }}y = r\sin \theta \cr & \left( {x,y} \right) \to \left( {0,0} \right),{\text{ so }}r \to 0 \cr & {\text{Substituting}} \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \cos \left( {{x^2} + {y^2}} \right) = \mathop {\lim }\limits_{r \to 0} \cos \left[ {{{\left( {r\cos \theta } \right)}^2} + {{\left( {r\sin \theta } \right)}^2}} \right] \cr & = \mathop {\lim }\limits_{r \to 0} \cos \left[ {{r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)} \right] \cr & = \mathop {\lim }\limits_{r \to 0} \cos \left( {{r^2}} \right) \cr & {\text{Evaluate the limit when }}r \to 0 \cr & = \cos \left( {{0^2}} \right) \cr & = 1 \cr & {\text{Then, we can conclude that}} \cr & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \cos \left( {{x^2} + {y^2}} \right) = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.