Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.1 Exponential And Logarithmic Functions - Exercises Set 6.1 - Page 419: 42

Answer

b) $20$

Work Step by Step

a) Let's note: $$\log_bx=m, \log_a x=n$$ We have: $$x=b^m, x=a^n$$ $$b^m=a^n\Rightarrow b=a^{n/m}$$ Let's calculate: $$\frac{\log_a x}{\log_a b}=\frac{n}{\log_a a^{n/m}}=\frac{n}{\frac{n}{m}}=m$$ But $m=\log_bx$, so we got $$\log_bx=\frac{\log_a x}{\log_a b}$$ b) We have: $$\begin{aligned} \log_2 81\cdot\log_3 32&=\log_2 (3^4)\cdot\log_3 (2^5)\\ &=(4\log_2 3)(5\log_3 2)\\ &=20\log_2 3\cdot\log_3 2. \end{aligned}$$ We use the change of base formula with for $\log_3 2$ with $b=3$ and $x=2$: $$20\log_2 3\cdot\log_3 2=20\log_2 3\cdot\frac{\log_2 2}{\log_2 3}=20\cdot 1=20$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.