Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.1 Exponential And Logarithmic Functions - Exercises Set 6.1 - Page 419: 30

Answer

$x=0, x=-\ln2$

Work Step by Step

Let $u=e^{-x}$, then $u^{2}=e^{-2x}$. Then $e^{-2x}-3e^{-x}=-2$ will be $$u^{2}-3u=-2.$$ Simplify $$ u^{2}-3u+2=0.$$ Factor it $$ (u-1)(u-2)=0.$$ Solve $$u-1=0 \text{ or }u-2 = 0$$ $$u= 1 \text{ or }u=2.$$ Since $u = e^{-x}$, then $$e^{-x}=1 \text{ or }e^{-x}=2.$$ We find $x$: $$\begin{aligned} \ln e^{-x}&=\ln1\text{ or } \ln e^{-x}=\ln2\\ -x&=0\text{ or } -x=\ln2\\ x&=0 \text{ or } x=-\ln2. \end{aligned}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.