Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - Chapter 4 Review Exercises - Page 344: 39

Answer

$$A = \frac{{22}}{3}$$

Work Step by Step

$$\eqalign{ & y = {x^2} - 1;\,\,\,\left[ {0,3} \right] \cr & {\text{From the graph we can see that the area is given by}} \cr & A = \int_0^1 {\left( {1 - {x^2}} \right)} dx + \int_1^3 {\left( {{x^2} - 1} \right)dx} \cr & A = \left[ {x - \frac{1}{3}{x^3}} \right]_0^1 + \left[ {\frac{1}{3}{x^3} - x} \right]_1^3 \cr & {\text{Evaluating}} \cr & A = \left[ {1 - \frac{1}{3}{{\left( 1 \right)}^3}} \right] + \left[ {\frac{1}{3}{{\left( 3 \right)}^3} - \left( 3 \right)} \right] - \left[ {\frac{1}{3}{{\left( 1 \right)}^3} - \left( 1 \right)} \right] \cr & A = \frac{2}{3} + 6 + \frac{2}{3} \cr & A = \frac{{22}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.