Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - Chapter 4 Review Exercises - Page 344: 28

Answer

$$\frac{{81}}{{10}}$$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^2 {x\left( {1 + {x^3}} \right)} dx \cr & {\text{mutliply}} \cr & \int_{ - 1}^2 {\left( {x + {x^4}} \right)} dx \cr & {\text{find the antiderivative by the power rule}} \cr & = \left( {\frac{{{x^2}}}{2} + \frac{{{x^{4 + 1}}}}{{4 + 1}}} \right)_{ - 1}^2 \cr & = \left( {\frac{{{x^2}}}{2} + \frac{{{x^5}}}{5}} \right)_{ - 1}^2 \cr & {\text{part 1 of fundamental theorem of calculus}} \cr & = \left( {\frac{{{{\left( 2 \right)}^2}}}{2} + \frac{{{{\left( 2 \right)}^5}}}{5}} \right) - \left( {\frac{{{{\left( { - 1} \right)}^2}}}{2} + \frac{{{{\left( { - 1} \right)}^5}}}{5}} \right) \cr & {\text{simplify}} \cr & = \left( {\frac{{42}}{5}} \right) - \left( {\frac{3}{{10}}} \right) \cr & = \frac{{81}}{{10}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.