Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 331: 43

Answer

\begin{align} &(a) \ t_{max} = 4.9s \\ &(b) \ s_{max} = 270m \\ &(c) \ t = 9.85s \\ & (d) \ v = -49m/s \\ & (e) \ t_{total} = 12.74s \\ & (f) \ v_{ground} = -77.9m/s \end{align}

Work Step by Step

$\text {It is given that the initial velocity and height:}$ \begin{align} v_0=49 \ m/s; \ s_0 = 150 \ m \end{align} $\text {In order to solve this problem, we have to use formulas (15) and (16) from book:}$ \begin{align} & s(t) = s_0+v_0t-\frac{gt^2}{2} \\ & v(t) = v_0 -gt \end{align} $\text {Also, we know that g $\approx$ 10 m/$s^2$. Thus,}$ $\text {(a) At maximum height v = 0:}$ \begin{align} & v(t) = v_0 -gt \\ & 0 = 49 - 10\times t_{max} \\ &t_{max} = 4.9s \end{align} $\text {(b)}$ \begin{align} & s(t) = s_0+v_0t_{max}-\frac{gt_{max}^2}{2} \\ & s_{max} = 150 + 49 \times 4.9-\frac{10 \times 4.9^2}{2} = 270m \end{align} $\text {(c)}$ \begin{align} t = t_{down1} + t_{max} = 2 \times t_{max} = 9.8s \end{align} $\text {(d) At maximum height v = 0:}$ \begin{align} & v(t) = v_0 -gt_{down1} \\ & v = 0 - 10\times 4.9 = -49m/s \end{align} $\text {(e) At the ground s = 0:}$ \begin{align} s(t) = s_0+&vt_{down2}-\frac{gt_{down2}^2}{2} \\ 0 = 150 - &49t_{down2} - 5t_{down2}^2 \\ &t_{down2} = 2.89s \\ t_{total} &= t + t_{down2} = 12.74s \end{align} $\text {(f)}$ \begin{align} &v(t) = v_0-gt_{down2} \\ & v_{ground} = -49 -10 \times 2.89 = -77.9 m/s \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.