Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 331: 37

Answer

(a) $-48 \mathrm{ft} / \mathrm{s},16 \mathrm{ft} / \mathrm{s}$ (b) $196 \mathrm{ft}$ (c) $112 \mathrm{ft} / \mathrm{s}$

Work Step by Step

Using Formula (15) and Formula (16) from the book: $s(t)=s_{0}+v_{0} t-\frac{g}{2} t^{2}$ $v(t)=v_{0}-g t$ $g=32 \mathrm{ft} / \mathrm{s}^{2}$ The maximum height will be reached at a critical point from the position function, and therefore at zero for the velocity function. (a) $v(t)=112-32 t$ $v(3)=3 \cdot -32+112=16 \mathrm{ft} / \mathrm{s}$ $v(5)=5 \cdot -32+112=-48 \mathrm{ft} / \mathrm{s}$ $v_{0}=112$ , $s_{0}=0$ (b) $v(t)=112-32 t=0$ $t=\frac{-112}{-32}=3.5$ $s(3.5)=-16 \cdot 3.5^{2}+3.5 \cdot 113=196 \mathrm{ft}$ Determine when the projectile hits the ground. $(\mathrm{c}) s(t)=112 t-16 t^{2}=0$ \[ \Rightarrow t=\frac{-112}{-16}=7 \] Speed at $t=7$: $|v(7)|=|112-32 \cdot 7|=|-112|=112 \mathrm{ft} / \mathrm{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.