Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 331: 41

Answer

(a) $6.12 \mathrm{s}$ (b) $183.67 \mathrm{m}$ (c) $6.12 s$ (d) $-59.95 m/ s$

Work Step by Step

Using Formula (15) and Formula (16) from the book: \[ \begin{array}{l} s_{0}+v_{0} t-\frac{g}{2} t^{2} =s(t) \\ v_{0}-g t= v(t)\\ g=9.8 \mathrm{m} / \mathrm{s}^{2} \end{array} \] The maximum height will be reached at a critical point from the position function and therefore at the zero of the velocity function. (a) $v(t)=60-9.8 t=0$ \[ \Rightarrow t=\frac{-60}{-9.8}=6.12 \mathrm{s} \] $60=v_{0}$ (b) $s(6.12)= 6.12^{2} \cdot (-4.9)+6.12 \cdot 60=183.67 \mathrm{m}$ Determine the position at $t=6.12 \mathrm{s}$ \[ s_{0}=0 \] So it takes the rocket $12.24-6.12=6.12$ s to drop back to the ground from its highest point. The projectile hits the ground at: (c) $s(t)=60 t-4.9 t^{2}=0$ $\Rightarrow t=\frac{-60}{-4.9}=12.24 \mathrm{s}$ Velocity at $t=12.24 \mathrm{s}$: (d) $v(12.24)=60-9.8 \cdot 12.24=-59.95 \mathrm{m} / \mathrm{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.