Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.6 The Fundamental Theorem Of Calculus - Exercises Set 4.6 - Page 320: 2

Answer

(a) $\frac{25}{2}$ (b) 30 (c) $\frac{21}{2}$

Work Step by Step

Evaluate definite integral (a) $\int_{0}^{5} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{5}=-\frac{0}{2}+\frac{25}{2}=\frac{25}{2}$ Using geometry \[ \int_{0}^{5} x d x=\frac{5 \cdot 5}{2}=\frac{25}{2} \] Evaluate definite integral (b) $\int_{3}^{9} 5 d x=\left.(5 x)\right|_{3} ^{9}=-15+45=30$ Using geometry $\int_{3}^{9} 5 d x=5 \cdot 6=30$ Evaluate definite integral (c) $\int_{-1}^{2}(3+x) d x=\left.\left(\frac{x^{2}}{2}+3 x\right)\right|_{-1} ^{2}=\left(6+\frac{4}{2}\right)-$ $\left(\frac{1}{2}-3\right)=\frac{21}{2}$ Using geometry $\int_{-1}^{2}(3+x) d x=\frac{(5+2) \cdot 3}{2}=\frac{21}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.