Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 297: 8

Answer

$$\sum\limits_{n = 1}^5 {\frac{1}{n}} {\left( { - 1} \right)^{n + 1}}$$

Work Step by Step

$$\eqalign{ & 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} \cr & {\text{We can write the series as:}} \cr & \frac{1}{1} + \frac{1}{2}\left( { - 1} \right) + \frac{1}{3} + \frac{1}{4}\left( { - 1} \right) + \frac{1}{5} \cr & {\text{Then }} \cr & {a_n} = \frac{1}{n} \cr & {\text{The sign of the terms are alternating, then we must add }}{\left( { - 1} \right)^n} \cr & \sum\limits_{n = 1}^5 {\frac{1}{n}} {\left( { - 1} \right)^{n + 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.