Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 297: 3

Answer

(a) $\frac{1}{2}$ (b) $1, 2, \frac{3}{2}, \frac{5}{2}$ (c) $\frac{5}{4}, \frac{7}{4}, \frac{9}{4}, \frac{11}{4}$ (d) $2,3, \frac{5}{2}, \frac{3}{2}$

Work Step by Step

(a) The interval has length $2,$ so: $\frac{1}{2}=\frac{2}{4}$ (b) The intervals are then $\left[2, \frac{5}{2}\right], \left[1, \frac{3}{2}\right],\left[\frac{3}{2}, 2\right]$ and $\left[\frac{5}{2}, 3\right]$ So the left end points are: $1, \frac{3}{2}, 2, \frac{5}{2}$ (c) The intervals are then $\left[1, \frac{3}{2}\right],\left[\frac{3}{2}, 2\right],\left[2, \frac{5}{2}\right]$ and $\left[\frac{5}{2}, 3\right]$ Thus the midpoints are: $\frac{5}{4}, \frac{7}{4}, \frac{9}{4}, \frac{11}{4}$ (d) The intervals are then $\left[\frac{3}{2}, 2\right],\left[2, \frac{5}{2}\right], \left[1, \frac{3}{2}\right]$ and $\left[\frac{5}{2}, 3\right]$ So the left end points are: $\frac{3}{2}, 2, \frac{5}{2}, 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.