Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 297: 7

Answer

$$\sum\limits_{n = 1}^6 {\left( {2n - 1} \right)} {\left( { - 1} \right)^{n + 1}}$$

Work Step by Step

$$\eqalign{ & 1 - 3 + 5 - 7 + 9 - 11 \cr & d = 3 - 1 = 5 - 3 = 7 - 5 = 2,{\text{ }}{a_1} = 1,{\text{ }}n = 15 \cr & {a_n} = {a_1} + \left( {n - 1} \right)d \cr & {a_n} = 1 + \left( {n - 1} \right)\left( 2 \right) \cr & {a_n} = 1 + 2n - 2 \cr & {a_n} = 2n - 1 \cr & {\text{The sign of the terms are alternating, then we must add }}{\left( { - 1} \right)^n} \cr & \sum\limits_{n = 1}^6 {\left( {2n - 1} \right)} {\left( { - 1} \right)^{n + 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.