Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.1 Analysis Of Functions I: Increase, Decrease, and Concavity - Exercises Set 3.1 - Page 195: 26

Answer

Increasing: $(0,\tfrac{8}{27}),$ Decreasing: $(-\infty,0)\cup(\tfrac{8}{27},\infty),$ Concave up: $\varnothing,$ Concave down: $(-\infty,0)\cup(0,\infty),$ Inflection points: none.

Work Step by Step

$\textbf{Given:}\qquad f(x)=x^{2/3}-x.$ $\text{Compute derivatives:}$ \begin{align*} f'(x)&=\frac{2}{3}x^{-1/3}-1 =\frac{2-3x^{1/3}}{3x^{1/3}},\\[6pt] f''(x)&=-\frac{2}{9}x^{-4/3}. \end{align*} Note: $f'$ and $f''$ are not defined at $x=0$, while $f$ is defined there with $f(0)=0$. $\textbf{(a) Intervals where $f$ is increasing.}$ Let $t=x^{1/3}$ (the real cube root), so $f'(x)=\dfrac{2-3t}{3t}$. The critical value from the numerator is $t=\tfrac{2}{3}$, i.e. $x=t^3=\left(\tfrac{2}{3}\right)^3=\dfrac{8}{27}$. Analyze the sign of $f'$: \begin{array}{ll} t<0 &\Rightarrow 2-3t>0,\;3t<0 \Rightarrow f'<0,\\[4pt] 00,\;3t>0 \Rightarrow f'>0,\\[4pt] t>\tfrac{2}{3} &\Rightarrow 2-3t<0,\;3t>0 \Rightarrow f'<0. \end{array} Hence $f'(x)>0$ only for $0\dfrac{8}{27}$. $\boxed{\text{Decreasing on }(-\infty,0)\cup(\tfrac{8}{27},\infty).}$ $\textbf{(c) Open intervals where $f$ is concave up.}$ Since $f''(x)=-\frac{2}{9}x^{-4/3},$ and $x^{-4/3}>0$ for all $x\neq0$, we have $f''(x)<0$ for every $x\neq0$. Thus there are no intervals where $f$ is concave up. $\boxed{\text{Concave up: }\varnothing.}$ $\textbf{(d) Open intervals where }$ $f\textbf{ is concave down.}$ Because $f''(x)<0$ for all $x\neq0$, $f$ is concave down on both sides of $0$ (excluding $0$ itself where $f''$ is undefined): $\boxed{\text{Concave down on }(-\infty,0)\cup(0,\infty).}$ $\textbf{(e) $x$-coordinates of all inflection points.}$ There is no change of concavity (it is negative on both sides of $0$), so $f$ has no inflection points. $\boxed{\text{No inflection points (no }x\text{-coordinates).}}$ $\textbf{Summary:}$ Increasing: $(0,\tfrac{8}{27}),$ Decreasing: $(-\infty,0)\cup(\tfrac{8}{27},\infty),$ Concave up: $\varnothing,$ Concave down: $(-\infty,0)\cup(0,\infty),$ Inflection points: none. <\x>
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.