Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.1 Analysis Of Functions I: Increase, Decrease, and Concavity - Exercises Set 3.1 - Page 195: 24

Answer

(a) Increasing: $(\frac{1}{4}, \infty )$ (b) Decreasing :$( -\infty, \frac{1}{4} )$ except $x=0$ (c) Concave up:$ (−∞,−\frac{1}{2}​)∪(0,∞)$ (d) Concave down:$ (−\frac{1}{2}​,0),$ (e) Inflection points: $x=−\frac{1}{2},0$

Work Step by Step

(a) Intervals where f is increasing. $f(x)=x^{\frac{4}{3}}-x^{ \frac{1}{3}}$ $f'(x)=\frac{d}{dx}f(x)=\frac{d}{dx}x^{\frac{4}{3}}-\frac{d}{dx}x^{ \frac{1}{3}}$ $f'(x)= \frac{4}{3}x^{\frac{4}{3}-1}- \frac{1}{3} x^{\frac{1}{3}-1}=\frac{4}{3}x^{\frac{1}{3}}- \frac{1}{3} x^{-\frac{2}{3}} $ $f'(x)=\frac{1}{3}(4x^{\frac{1}{3}} -\frac{1}{x^{\frac{2}{3}}})= \frac{1}{3} \frac{4x^{\frac{1}{3}} x^{\frac{2}{3}}-1}{x^{ \frac{2}{3}}}= \frac{1}{3}( \frac{4x-1}{x^{\frac{2}{3}}} )$ $f'(x)=\frac{1}{3x^{\frac{2}{3}}}(4x-1) $ For $x\ne0 $, $ \frac{1}{3x^{\frac{2}{3}}}\gt0 $, So $f'(x) \gt 0 \Longleftrightarrow 4x-1\gt 0 $ $\Longleftrightarrow 4x\gt 1 \Longleftrightarrow x\gt\frac{1}{4} $ Hence f(x) is increasing on $( \frac{1}{4}, \infty)$ (b)Intervals where f is decreasing $f'(x)\lt 0 \Longleftrightarrow 4x-1\lt 0 $ That is $x\lt \frac{1}{4}$ f(x) is decreasing on $(-\infty, \frac{1}{4})$ (c) Open intervals where f is concave up. $f'(x)=\frac{4}{3}x^{\frac{1}{3}} -\frac{1}{3}x^{- \frac{2}{3}}$ $f''(x)=\frac{d}{dx}f'(x) =\frac{d}{dx}\frac{4}{3}x^{\frac{1}{3}} - \frac{d}{dx}\frac{1}{3}x^{- \frac{2}{3}}$ $f''(x)=\frac{d}{dx}f'(x) =\frac{4}{3} \frac{d}{dx} x^{\frac{1}{3}} - \frac{1}{3} \frac{d}{dx} x^{- \frac{2}{3}}$ $f''(x)=\frac{d}{dx}f'(x) =\frac{4}{3} \frac{1}{3} x^{\frac{1}{3}-1} - \frac{1}{3} (-\frac{2}{3}) x^{- \frac{2}{3}-1}$ $f''(x)=\frac{4}{9}x^{-\frac{2}{3}}+\frac{2}{9}x^{-\frac{5}{3}} $ $f''(x)=\frac{2}{9}x^{-\frac{5}{3}} (2x)+\frac{2}{9}x^{-\frac{5}{3} }=\frac{2}{9} x^{-\frac{5}{3}}(2x+1)$ Now For $x\gt 0 , x^{-\frac{5}{3} } \gt 0, $ and $2x+1\gt 0, So f''(x)\gt 0$ For $ -\frac{1}{2}\lt x \lt 0: $ , $ x^{-\frac{5}{3}}\lt 0$ and $2x+1\gt 0,$ So $f''(x)\lt 0$ For $x\lt-\frac{1}{2}: x^{-\frac{5}{3}}\lt0 $ and $2x+1\lt 0$, $f''(x)\gt 0$ Therefore, concave up on $(-\infty,-\frac{1}{2}) $ and on $(0, \infty)$ Concave up on $(-\infty,-\frac{1}{2}) \cup (0, \infty) $ (d) Open intervals where 𝑓 is concave down Concave down on $(-\frac{1}{2},0) $ (e) x-coordinates of inflection points Inflection points occur where concavity changes sign. From the intervals, concavity changes at $x=-\frac{1}{2}$ and at $x=0$.Both points are in the domain of f. Their y-coordinates are $f(-\frac{1}{2})= (-\frac{1}{2} )^{ \frac{4}{3}} - (-\frac{1}{2} )^{ \frac{1}{3}} = (\frac{1}{2} )^{ \frac{4}{3}} + (\frac{1}{2} )^{ \frac{1}{3}} , f(0)=0 $ Inflection points at $x= -\frac{1}{2}, $ and $x=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.