Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 181: 7

Answer

$${\text{ }}\tan x \approx x$$

Work Step by Step

$$\eqalign{ & \tan x \approx x,{\text{ }}{x_0} = 0 \cr & {\text{Let }}f\left( x \right) = \tan x \cr & {\text{ }}f\left( {{x_0}} \right) = f\left( 0 \right) = \tan 0 = 0 \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\tan x} \right] \cr & f'\left( x \right) = {\sec ^2}x \cr & f'\left( {{x_0}} \right) = {\sec ^2}\left( 0 \right) = 1 \cr & {\text{We can approximate values of }}f\left( x \right){\text{ by}} \cr & {\text{ }}f\left( x \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) \cr & {\text{then}} \cr & {\text{ }}\tan x \approx 0 + 1\left( {x - 0} \right) \cr & {\text{ }}\tan x \approx x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.