Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 181: 10

Answer

$$\sqrt {1 + \Delta x} \approx 1 + \frac{1}{2}\Delta x$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \sqrt x ;{\text{ }}\sqrt {1 + \Delta x} \approx 1 + \frac{1}{2}\Delta x,{\text{ }}{x_0} = 1,{\text{ where }}\Delta x = x - 1 \cr & {\text{Calculate }}f'\left( x \right) \cr & f'\left( x \right) = \frac{1}{{2\sqrt x }} \cr & {\text{Evaluate }}f\left( {{x_0}} \right){\text{ and }}f'\left( {{x_0}} \right){\text{ }} \cr & f\left( {{x_0}} \right) = \sqrt 1 = 1 \cr & f'\left( {{x_0}} \right) = \frac{1}{{2\sqrt 1 }} = \frac{1}{2} \cr & {\text{Apply }}f\left( {{x_0} + \Delta x} \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\Delta x{\text{ and substitute the known values}} \cr & {\text{ }}\sqrt {1 + \Delta x} \approx 1 + \frac{1}{2}\Delta x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.