Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.9 Local Linear Approximation; Differentials - Exercises Set 2.9 - Page 181: 6

Answer

$${\text{ }}\frac{1}{{\sqrt {1 - x} }} \approx 1 + \frac{1}{2}x$$

Work Step by Step

$$\eqalign{ & \frac{1}{{\sqrt {1 - x} }} \approx 1 + \frac{1}{2}x,{\text{ }}{x_0} = 0 \cr & {\text{Let }}f\left( x \right) = \frac{1}{{\sqrt {1 - x} }} \cr & {\text{ }}f\left( {{x_0}} \right) = f\left( 0 \right) = \frac{1}{{\sqrt {1 - 0} }} = 1 \cr & f\left( x \right) = {\left( {1 - x} \right)^{ - 1/2}} \cr & f'\left( x \right) = - \frac{1}{2}{\left( {1 - x} \right)^{ - 3/2}}\left( { - 1} \right) \cr & f'\left( x \right) = \frac{1}{{2{{\left( {1 - x} \right)}^{3/2}}}} \cr & f'\left( {{x_0}} \right) = f'\left( 0 \right) = \frac{1}{{2{{\left( {1 - 0} \right)}^{3/2}}}} = \frac{1}{2} \cr & {\text{We can approximate values of }}f\left( x \right){\text{ by}} \cr & {\text{ }}f\left( x \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) \cr & {\text{then}} \cr & {\text{ }}\frac{1}{{\sqrt {1 - x} }} \approx 1 + \frac{1}{2}\left( {x - 0} \right) \cr & {\text{ }}\frac{1}{{\sqrt {1 - x} }} \approx 1 + \frac{1}{2}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.