Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.3 Double Integrals In Polar Coordinates - Exercises Set 14.3 - Page 1024: 17

Answer

$\frac{64 \pi \sqrt{2}}{3}=v$

Work Step by Step

the volume is determined by $V=2 \int_{0}^{2 \pi} \int_{1}^{3} \sqrt{9-r^{2}} r d r d \theta$ integrate with respect to $r$ $-\int_{0}^{2 \pi}\left[\frac{\left(9-r^{2}\right)^{3 / 2}}{3 / 2}\right]_{1}^{3} d \theta=v$ $-\left(9-1^{3 / 2}\right)-\frac{2}{3} \int_{0}^{2 \pi}\left[\left(9-3^{2}\right)^{3 / 2}\right] d \theta=v$ $v=-\frac{2}{3} \int_{0}^{2 \pi}-[8]^{3 / 2} d \theta$ $v=\frac{2(8)^{3 / 2}}{3} \int_{0}^{2 \pi} d \theta$ $(2 \pi-0)\frac{2(8)^{3 / 2}}{3}=v$ $v=\frac{4 \pi\left(2^{3 / 2}\right)}{3}=\frac{4 \pi\left(2^{4}\right)(\sqrt{2})}{3}$ $\frac{64 \pi \sqrt{2}}{3}=v$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.