Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1017: 56

Answer

$$-2+\frac{9}{2} \ln 3$$

Work Step by Step

\[ \iint_{D} x d A=\int_{1}^{3} \int_{0}^{\ln x} x d y d x \] $D$ has been interpreted as a type I region (using Vertical cross-sections). We can also Interpret $D$ as a type II region (using horizontal cross-sections). So: \[ \iint_{D} x d A=\int_{0}^{\ln 3} \int_{e^{y}}^{3} x d x d y \] \[ \begin{array}{l} =\int_{0}^{\ln 3}\left[\frac{x^{2}}{2}\right]_{x=e^{y}}^{x=3} d y \\ =\frac{1}{2} \int_{0}^{\ln 3} 9-e^{2 y} d y \\ =\frac{1}{2}\left[-\frac{1}{2} e^{2 y}+ 9 y\right]_{0}^{\ln 3} \\ =\frac{1}{2}\left[-\frac{1}{2} e^{2 \ln 3}+9 \ln 3\right]-\frac{1}{2}\left[0-\frac{1}{2}\right] \\ =\frac{1}{2}\left[9 \ln 3-\frac{9}{2}+\frac{1}{2}\right] \\ =-2+\frac{9}{2} \ln 3 \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.