Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1017: 55

Answer

$$\frac{-1+e^{8}}{3}$$

Work Step by Step

\[ \iint_{D} e^{x^{3}} d A=\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^{3}} d x d y \] $D$ has been interpreted as a type II region (using horizontal cross-sections). We can also Interpret $D$ as a type I region (using vertical cross-sections). So: \[ \begin{array}{l} \int_{0}^{2} \int_{0}^{x^{2}} e^{x^{3}} d y d x=\iint_{D} e^{x^{3}} d A \\ \quad=\int_{0}^{2}\left[y e^{x^{3}}\right]_{y=0}^{y=x^{2}} d x \\ \quad=\int_{0}^{2} x^{2} e^{x^{3}} d x \end{array} \] Replace $d u=3 x^{2} d x$ and $u=x^{3}$ \[ =\frac{1}{3} \int_{0}^{8} e^{u} d u \] \[ \begin{array}{l} =\frac{1}{3}\left[e^{u}\right]_{0}^{8} \\ =\frac{-1+e^{8}}{3} \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.