Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.3 Partial Derivatives - Exercises Set 13.3 - Page 937: 35

Answer

$${f_x}\left( {x,y} \right) = - \frac{{4{{\sec }^2}x}}{{3{y^{8/3}}{{\left( {\tan x} \right)}^{7/3}}}},\,\,\,\,\,\,{f_y}\left( {x,y} \right) = - \frac{8}{{3{{\left( {\tan x} \right)}^{4/3}}{y^{11/3}}}}$$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = {\left( {{y^2}\tan x} \right)^{ - 4/3}} \cr & {\text{Calculate }}{f_x}\left( {x,y} \right){\text{ differentiating with respect to }}x;{\text{ treat }}y{\text{ as a constant}} \cr & {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}{\left( {{y^2}\tan x} \right)^{ - 4/3}} \cr & {f_x}\left( {x,y} \right) = {y^{ - 8/3}}\frac{\partial }{{\partial x}}{\left( {\tan x} \right)^{ - 4/3}} \cr & {\text{By the chain rule}} \cr & {f_x}\left( {x,y} \right) = {y^{ - 8/3}}\left( { - \frac{4}{3}} \right){\left( {\tan x} \right)^{ - 7/3}}\left( {{{\sec }^2}x} \right) \cr & {f_x}\left( {x,y} \right) = - \frac{{4{{\sec }^2}x}}{{3{y^{8/3}}{{\left( {\tan x} \right)}^{7/3}}}} \cr & \cr & {\text{Calculate }}{f_y}\left( {x,y} \right){\text{ differentiating with respect to }}y;{\text{ treat }}x{\text{ as a constant}} \cr & {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}{\left( {{y^2}\tan x} \right)^{ - 4/3}} \cr & {f_y}\left( {x,y} \right) = {\left( {\tan x} \right)^{ - 4/3}}\frac{\partial }{{\partial y}}\left( {{y^{ - 8/3}}} \right) \cr & {\text{By the power rule}} \cr & {f_y}\left( {x,y} \right) = {\left( {\tan x} \right)^{ - 4/3}}\frac{\partial }{{\partial x}}\left( {{y^{ - 8/3}}} \right) \cr & {f_y}\left( {x,y} \right) = {\left( {\tan x} \right)^{ - 4/3}}\left( { - \frac{8}{3}{y^{ - 11/3}}} \right) \cr & {f_y}\left( {x,y} \right) = - \frac{8}{{3{{\left( {\tan x} \right)}^{4/3}}{y^{11/3}}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.