Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.5 Curvature - Exercises Set 12.5 - Page 879: 34

Answer

$$\frac{1}{\sqrt{2}} e^{t}$$

Work Step by Step

We find: $\frac{\left| y^{\prime \prime}x^{\prime}- x^{\prime \prime}y^{\prime}\right|}{\left(y^{\prime 2}+x^{\prime 2}\right)^{3 / 2}}=\kappa$ $-e^{-t}(\sin t+\cos t)=x^{\prime}(t) \quad (-\sin t+\cos t)e^{-t}=y^{\prime}(t)$ $2 e^{-t}= x^{\prime \prime}(t) ,\sin t \quad y^{\prime \prime}(t)=-2 e^{-t} \cos t$ $x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}=2 e^{-2 t}(\sin t+\cos t) \cos t-2 e^{-2 t}(\cos t-\sin t) \sin t=2 e^{-2 t}[1]$ $y^{\prime 2}+x^{\prime 2}=\left[-e^{-t}(\cos t+\sin t)\right]^{2}+\left[e^{-t}(\cos t-\sin t)\right]^{2}=e^{-2 t}[1+1]$ $\kappa=\frac{\left|2 e^{-2 t}\right|}{\left(2 e^{-2 t}\right)^{3 / 2}}=\frac{2 e^{-2 t}}{2 e^{-3 t} \sqrt{2}}=\frac{1}{\sqrt{2}} e^{t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.