Answer
See proof
Work Step by Step
Let us put
$x = t,$
$y = \frac{1 + t}{t},$
$z = \frac{1 - t^2}{t}.$
Then
$x - y + z + 1 = t - \frac{1 + t}{t} + \frac{1 - t^2}{t} + 1 = \frac{t^2 - 1 - t + 1 - t^2 + t}{t} = 0.$ Thus, any point of the parametric curve lies on the given plane, i.e., the entire curve lies on the plane.