Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.1 Introduction To Vector-Valued Functions - Exercises Set 12.1 - Page 846: 4

Answer

$[-1,1)$ $ \mathbf{r}(t_0) = 2\mathbf{i}$

Work Step by Step

Step 1 We first consider the domain of each component function. Step 2 The domain of a function is the set of input or argument values for which the function is real and defined. Step 3 Note that: \[ x(t) = 2e^{-t}, \quad y(t) = \sin^{-1}(t), \quad z(t) = \ln(1-t) \] Step 4 The domain of the function $x(t)$ is $(-\infty, \infty)$. The domain of the function $y(t)$ is $[-1, 1]$. The domain of the function $z(t)$ is $(-\infty, 1)$. Step 5 Hence, the domain of the vector-valued function $\mathbf{r}$ is $[-1, 1)$. Step 6 If $t_0 = 0$, then: \[ \mathbf{r}(t_0) = 2\mathbf{e}^{0} \mathbf{i} + \sin^{-1}(0) \mathbf{j} + \ln(1-0) \mathbf{k} = 2\mathbf{i} \] Result \[ \mathbf{r}(t_0) = 2\mathbf{i} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.