Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.6 Continuity of Trigonometric Functions - Exercises Set 1.6 - Page 105: 13



Work Step by Step

Given $$\lim_{\theta \to 0} \frac{\sin 3\theta }{\theta}$$ Then \begin{align*} \lim_{\theta \to 0} \frac{\sin 3\theta }{\theta}&=\lim_{\theta \to 0} \frac{3\sin 3\theta }{3\theta}\\ &=3\lim_{3\theta \to 0} \frac{ \sin 3\theta }{3\theta}\\ &=3(1)\\ &=3 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.