Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 549: 8

Answer

$\frac{1}{{3\ln 3}}$

Work Step by Step

$$\eqalign{ & \int_1^\infty {{{\left( {\frac{1}{3}} \right)}^x}} dx \cr & {\text{Using the definition of improper integrals }} \cr & \underbrace {\int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{t \to \infty } } \int_a^t {f\left( x \right)} dx}_ \Downarrow \cr & \int_1^\infty {{{\left( {\frac{1}{3}} \right)}^x}} dx = \mathop {\lim }\limits_{t \to \infty } \int_1^t {{{\left( {\frac{1}{3}} \right)}^x}} dx \cr & {\text{Integrating}}{\text{, use }}\int {{a^x}} dx = \left( {\frac{1}{{\ln a}}} \right){a^x} + C \cr & = \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{1}{{\ln \left( {1/3} \right)}}{{\left( {\frac{1}{3}} \right)}^x}} \right]_1^t \cr & = - \frac{1}{{\ln 3}}\mathop {\lim }\limits_{t \to \infty } \left[ {{{\left( {\frac{1}{3}} \right)}^x}} \right]_1^t \cr & = - \frac{1}{{\ln 3}}\mathop {\lim }\limits_{t \to \infty } \left[ {{{\left( {\frac{1}{3}} \right)}^t} - {{\left( {\frac{1}{3}} \right)}^1}} \right] \cr & = - \frac{1}{{\ln 3}}\left[ {{{\left( {\frac{1}{3}} \right)}^{\mathop {\lim }\limits_{t \to \infty } t}} - \mathop {\lim }\limits_{t \to \infty } {{\left( {\frac{1}{3}} \right)}^1}} \right] \cr & {\text{Evaluate the limit when }}t \to \infty \cr & = - \frac{1}{{\ln 3}}\left[ {0 - \frac{1}{3}} \right] \cr & = \frac{1}{{3\ln 3}} \cr & {\text{Therefore}}{\text{, the integral converges}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.