Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 549: 5

Answer

$1$

Work Step by Step

$$\eqalign{ & \int_1^\infty {2{x^{ - 3}}} dx \cr & {\text{Using the definition of improper integrals }} \cr & \underbrace {\int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{t \to \infty } } \int_a^t {f\left( x \right)} dx}_ \Downarrow \cr & \int_1^\infty {2{x^{ - 3}}} dx = \mathop {\lim }\limits_{t \to \infty } \int_1^t {2{x^{ - 3}}} dx \cr & {\text{Integrating}} \cr & = \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{{2{x^{ - 2}}}}{{ - 2}}} \right]_1^t \cr & = - \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{1}{{{x^2}}}} \right]_1^t \cr & = - \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{1}{{{t^2}}} - \frac{1}{{{{\left( 1 \right)}^2}}}} \right] \cr & = - \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{1}{{{t^2}}} - 1} \right] \cr & {\text{Evaluate the limit when }}t \to \infty \cr & = - \left( {0 - 1} \right) \cr & = 1 \cr & {\text{Therefore}}{\text{, the integral converges.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.