Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 549: 10

Answer

$\frac{\pi }{4} - \frac{1}{2}\arctan \left( {\frac{1}{2}} \right)$

Work Step by Step

$$\eqalign{ & \int_1^\infty {\frac{1}{{{x^2} + 4}}} dx \cr & {\text{Using the definition of improper integrals }} \cr & \underbrace {\int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{t \to \infty } } \int_a^t {f\left( x \right)} dx}_ \Downarrow \cr & \int_1^\infty {\frac{1}{{{x^2} + 4}}} dx = \mathop {\lim }\limits_{t \to \infty } \int_1^t {\frac{1}{{{x^2} + 4}}} dx \cr & = \mathop {\lim }\limits_{t \to \infty } \int_1^t {\frac{1}{{{x^2} + {{\left( 2 \right)}^2}}}} dx \cr & {\text{Integrating}}{\text{, apply}}\int {\frac{1}{{{x^2} + {a^2}}}dx = \frac{1}{a}\arctan \left( {\frac{x}{a}} \right) + C} \cr & = \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{1}{2}\arctan \left( {\frac{x}{2}} \right)} \right]_1^t \cr & = \frac{1}{2}\mathop {\lim }\limits_{t \to \infty } \left[ {\arctan \left( {\frac{x}{2}} \right)} \right]_1^t \cr & = \frac{1}{2}\mathop {\lim }\limits_{t \to \infty } \left[ {\arctan \left( {\frac{t}{2}} \right) - \arctan \left( {\frac{1}{2}} \right)} \right] \cr & {\text{Evaluate the limit when }}t \to \infty \cr & = \frac{1}{2}\left( {\frac{\pi }{2}} \right) - \frac{1}{2}\arctan \left( {\frac{1}{2}} \right) \cr & = \frac{\pi }{4} - \frac{1}{2}\arctan \left( {\frac{1}{2}} \right) \cr & {\text{Therefore}}{\text{, the integral converges.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.