Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 549: 7

Answer

$\frac{1}{2}$

Work Step by Step

$$\eqalign{ & \int_0^\infty {{e^{ - 2x}}} dx \cr & {\text{Using the definition of improper integrals }} \cr & \underbrace {\int_a^\infty {f\left( x \right)dx = \mathop {\lim }\limits_{t \to \infty } } \int_a^t {f\left( x \right)} dx}_ \Downarrow \cr & \int_0^\infty {{e^{ - 2x}}} dx = \mathop {\lim }\limits_{t \to \infty } \int_0^t {{e^{ - 2x}}} dx \cr & {\text{Integrating}}{\text{, use }}\int {{e^{ - ax}}} dx = - \frac{1}{a}{e^{ - ax}} + C \cr & = \mathop {\lim }\limits_{t \to \infty } \left[ { - \frac{1}{2}{e^{ - 2x}}} \right]_0^t \cr & = - \frac{1}{2}\mathop {\lim }\limits_{t \to \infty } \left[ {{e^{ - 2x}}} \right]_0^t \cr & = - \frac{1}{2}\mathop {\lim }\limits_{t \to \infty } \left[ {{e^{ - 2t}} - {e^0}} \right] \cr & = - \frac{1}{2}\mathop {\lim }\limits_{t \to \infty } \left[ {{e^{ - 2t}} - 1} \right] \cr & = - \frac{1}{2}\left[ {\mathop {\lim }\limits_{t \to \infty } {e^{ - 2t}}} \right] - \frac{1}{2}\mathop {\lim }\limits_{t \to \infty } \left[ { - 1} \right] \cr & {\text{Evaluate the limit when }}t \to \infty \cr & \cr & = 0 - \frac{1}{2}\left[ { - 1} \right] \cr & = \frac{1}{2} \cr & {\text{Therefore}}{\text{, the integral converges}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.