Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.3 - Trigonometric Substitution - 7.3 Exercises - Page 505: 7

Answer

$\sqrt {4{x^2} - 25} - 5{\sec ^{ - 1}}\left( {\frac{{2x}}{5}} \right) + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt {4{x^2} - 25} }}{x}dx} ,{\text{ }}x = \frac{5}{2}\sec \theta \cr & {\text{Let }}x = \frac{5}{2}\sec \theta ,{\text{ }}dx = \frac{5}{2}\sec \theta \tan \theta d\theta \cr & {\text{Substituting}} \cr & \int {\frac{{\sqrt {4{x^2} - 25} }}{x}dx} = \int {\frac{{\sqrt {4{{\left( {\frac{5}{2}\sec \theta } \right)}^2} - 25} }}{{\frac{5}{2}\sec \theta }}\left( {\frac{5}{2}\sec \theta \tan \theta } \right)d\theta } \cr & {\text{Simplify the integrand}} \cr & = \int {\sqrt {25{{\sec }^2}\theta - 25} \left( {\tan \theta } \right)d\theta } \cr & = \int {\sqrt {25\left( {{{\sec }^2}\theta - 1} \right)} \left( {\tan \theta } \right)d\theta } \cr & {\text{Use the identity }}1 + {\tan ^2}\theta = {\sec ^2}\theta \cr & = \int {\sqrt {25\left( {{{\tan }^2}\theta } \right)} \left( {\tan \theta } \right)d\theta } \cr & = \int {5\tan \theta \left( {\tan \theta } \right)d\theta } \cr & = 5\int {{{\tan }^2}\theta d\theta } \cr & = 5\int {\left( {{{\sec }^2}\theta - 1} \right)} d\theta \cr & {\text{Integrating}} \cr & = 5\left( {\tan \theta - \theta } \right) + C \cr & = 5\tan \theta - 5\theta + C \cr & {\text{Write in terms of }}x,{\text{ use the triangle shown below}} \cr & \tan \theta = \frac{{\sqrt {4{x^2} - 25} }}{5},{\text{ }}\theta = {\sec ^{ - 1}}\left( {\frac{{2x}}{5}} \right){\text{then}} \cr & = 5\left( {\frac{{\sqrt {4{x^2} - 25} }}{5}} \right) - 5{\sec ^{ - 1}}\left( {\frac{{2x}}{5}} \right) + C \cr & = \sqrt {4{x^2} - 25} - 5{\sec ^{ - 1}}\left( {\frac{{2x}}{5}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.