Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.3 - Trigonometric Substitution - 7.3 Exercises - Page 505: 26

Answer

$\frac{1}{{225}}\left( {2\sqrt 3 - 3} \right)$

Work Step by Step

$$\eqalign{ & \int_0^{0.3} {\frac{x}{{{{\left( {9 - 25{x^2}} \right)}^{3/2}}}}} dx \cr & {\text{This integral can be solved using the substitution method}} \cr & {\text{Let }}u = 9 - 25{x^2} \cr & du = - 50xdx,{\text{ }}dx = - \frac{1}{{50x}}du \cr & {\text{The new limits of integration are:}} \cr & x = 0.3 \to u = 9 - 25{\left( {0.3} \right)^2} = 6.75 \cr & x = 0 \to u = 9 - 25{\left( 0 \right)^2} = 9 \cr & {\text{Substituting}}{\text{, we obtain}} \cr & \int_0^{0.3} {\frac{x}{{{{\left( {9 - 25{x^2}} \right)}^{3/2}}}}} dx = \int_9^{6.75} {\frac{x}{{{u^{3/2}}}}} \left( { - \frac{1}{{50x}}} \right)du \cr & = - \frac{1}{{50}}\int_9^{6.75} {\frac{1}{{{u^{3/2}}}}} du \cr & = - \frac{1}{{50}}\int_9^{6.75} {{u^{ - 3/2}}} du \cr & = - \frac{1}{{50}}\left[ {\frac{{{u^{ - 1/2}}}}{{ - 1/2}}} \right]_9^{6.75} \cr & = \frac{1}{{25}}\left[ {\frac{1}{{\sqrt u }}} \right]_9^{6.75} \cr & = \frac{1}{{25}}\left( {\frac{1}{{\sqrt {6.75} }} - \frac{1}{{\sqrt 9 }}} \right) \cr & = \frac{1}{{25}}\left( {\frac{{2\sqrt 3 - 3}}{9}} \right) \cr & = \frac{1}{{225}}\left( {2\sqrt 3 - 3} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.